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n-site approximations and coherent-anomaly-method analysis for a stochastic sandpile
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n-site cluster approximations for a stochastic sandpile in one dimension are developed. A height restriction
is imposed to limit the number of states: each site can harbor at most two particles~heightzi<2). ~This yields
a considerable simplification over the unrestricted case, in which the number of states per site is unbounded.!
On the basis of results forn<11 sites, the critical particle density aszc50.930(1) is estimated, in good
agreement with simulations. A coherent anomaly analysis yields estimates for the order parameter exponent
@b50.41(1)# and the relaxation time exponent (n uu.2.5).
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I. INTRODUCTION

Sandpile models are the prime example of self-organi
criticality @1–3#, in which a system with an absorbing-sta
phase transition is forced to its critical point@4–6#, leading
to scale invariance in the apparent absence of parameter@7#.
The absorbing-state phase transition, which depends
usual, on the fine tuning of one or more control paramet
is evident in sandpiles with a fixed number of particles@4,8–
14#, models that have come to be called fixed-energy sa
piles ~FES!.

Previous studies of FES reveal that they exhibit a ph
transition between an absorbing and an active state as
particle densityz ~which is the temperaturelike control pa
rameter! is increased beyond a critical value@4,15,16#. Until
now, most quantitative results on FES have been obta
from simulations@34#. It is therefore of interest to apply
theoretical methods to such models. One such approac
Suzuki’s coherent anomaly method~CAM! for analyzing a
series of cluster approximations. It has been shown to y
good estimates for critical properties both in@17,18# and out
of equilibrium @19,20#. In this work I developn-site approxi-
mations for a one-dimensional sandpile model, and ana
the results using the CAM. This represents the application
the CAM to a model representative of the class of absorb
state phase transitions in systems with a conserved de
@21–23#.

In this paper I study a FES with a height restriction. Fro
the theoretical viewpoint, an inconvenient feature of sand
models is the unbounded number of particles that may
cupy the same site; this complicates attempts to derive c
ter approximations. In Manna’s stochastic sandpile@24,25#,
sites with heightz>2 are active. If we restrict the height~or
number of sand grains per site!, to be <2, the effect on
critical properties should be minimal, aside from a possi
shift in the critical densityzc . This expectation was recentl
verified numerically: the restricted-height stochastic sand
belongs to the same universality class as its unrestri
counterpart@26#. I study the restricted-height model for ca
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culational convenience, as a representative of a broader
versality class that includes Manna’s stochastic sandpile,
conserved lattice gas, and the conserved threshold tran
process@21#.

The rest of the paper is organized as follows. The mode
defined in Sec. II, followed by a discussion ofn-site approxi-
mations in Sec. III. Numerical results are presented in S
IV. The CAM analysis is discussed in Sec. V, and in Sec.
I present a brief summary.

II. MODEL

The model is defined on a ring ofL sites with periodic
boundaries.~The cluster approximations effectively study th
L→` limit.! The configuration is specified by the number
particleszi50,1, or 2 at each site; sites withzi52 are said to
be active, and have a toppling rate of unity. The continuou
time ~sequential!, Markovian dynamics consists of a series
toppling events at individual sites. When sitei topples, two
particles attempt to move to randomly chosen nearest ne
bors j and j 8 of i. The new position of each particle is ac
cepted if and only if the target site has fewer than two p
ticles. I consider a stochastic toppling rule in which the tw
particles move independently. Any particle attempting
move to a site already harboring two particles is sent bac
the toppling site.~Thus an attempt to send two particles fro
site j to sitek, with zk51, results inzk52 andzj51.! Tran-
sition probabilities are listed in Table I.

TABLE I. Transition probabilities for the restricted-height san
pile. Probabilities are symmetric under reflection.

Transition Probability

020→101 1/2
→200 1/4

120→201 1/2
→102 1/4
→210 1/4

121→202 1/2
→211 1/4

220→202 1/4
→211 1/2

122→212 3/4
©2002 The American Physical Society22-1
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This model was studied via simulation in Ref.@26#, which
showed that the critical exponentsb andn' are the same a
for the unrestricted Manna sandpile. A similar conclusi
was reached in Ref.@21# for a two-dimensional restricted
height sandpile~called the conserved threshold transfer p
cess in that work!.

III. CLUSTER APPROXIMATIONS

The procedure parallels that used by Ferreira a
Mendirata to study the one-dimensional contact process@20#.
The n-site approximation consists of a set of coupled diff
ential equations for the probabilitiesPC

(n) of eachn-site con-
figurationC. ~There are 3n such configurations, but the num
ber of independent probabilities is;3n/2, due to
symmetries.! The system is assumed homogeneous, so
the PC

(n) are independent of position.
Since transitions in a set ofn contiguous sites generall

depend on sites outside the cluster, then-site probabilities are
coupled to those forn11 and so on, generating an infinit
hierarchy of equations. Then-site approximation truncate
this hierarchy by approximatingm-site probabilities~for m
.n) in terms ofn-siteconditionalprobabilities. In then-site
approximation, the joint probability for a sequence ofn11
sites is approximated as@20#

P(n11)~z1 , . . . ,zn11!

.P(n)~zn11uzn , . . . ,z2!P(n)~zn , . . . ,z1!

5
P(n)~zn11 , . . . ,z2!P(n)~zn , . . . ,z1!

P(n21)~zn , . . . ,z2!
. ~1!

Other approximation schemes are possible@27#; that embod-
ied in Eq.~1! is employed here because it retains the ma
mum information possible regarding correlations amon
sites in the (n11)-site sequence.

The equations for one- and two-site approximations
relatively simple to derive, and are described in Ref.@26#. I
have developed a computational algorithm capable of ge
ating the approximation for arbitraryn. Each configuration
C5(zn , . . . ,z1) is represented by an integer

I ~C!5 (
k51

n

zk3
k21. ~2!

The calculation begins with the generation of all config
rations, corresponding to each integer from zero~all sites
empty! up to the maximum, 3n21 ~all sites doubly occu-
pied!; the symmetry~under inversion! of each configuration
is determined. IfC is not symmetric, thenC and its mirror
image CR must have the same probability, and only t
smaller ofC andCR is treated explicitly, reducing the numbe
of variables roughly by half.

Next, a list of all possible transitions is constructed. He
it is useful to distinguish betweencentral transitions~involv-
ing a toppling at one of the sites 2, . . . ,n21) andboundary
transitions, in which either site 1 or siten, or one of the
peripheral sites~0 or n11) topples. The rate of a centra
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transitionC→C8 is the product of a branching probabilitypb
~for the particles to be redistributed in a particular manner
in Table I!, and the intrinsic toppling rate, which is unity
Consider, for example, configurationC5(21120). The tran-
sition rates associated with a toppling at the second
~counting from the right! are

w@~21120!→~21102!#5
1

4
,

w@~21120!→~21201!#5
1

2
,

w@~21120!→~21210!#5
1

4
.

For each configurationC, the set of allowed transitions to
other states, and the associated rates, are stored. In the
of a central transition fromC to C8, the contribution to
dP(C8)/dt is w@C→C8#P(C); the same quantity is of cours
subtracted fromdP(C)/dt.

For boundary transitions, one does not have access to
(n11)-site probabilities required to mount a complete d
scription, and so must resort to the truncation scheme
bodied in Eq. ~1!. For example, the contribution to
dP(2,z2 , . . . ,zn)/dt due to the transition (2,z2 , . . . ,zn)
→(1,z2 , . . . ,zn) is

1

2
P(n11)~0,2,z2 , . . . ,zn!1

3

4
P(n11)~1,2,z2 , . . . ,zn!.

The P(n11) are estimated using Eq.~1!. For boundary tran-
sitions one stores not only the rate, but the two configu
tions ~aside from the original one,C) whose probabilities are
needed to evaluatedP(C)/dt. With this information avail-
able, one can evaluate the derivativesdP(C)/dt for all pos-
sible configurations, given the probability distribution.

The evolution of the probability distribution is found vi
numerical integration, using a fourth-order Runge-Ku
scheme@28#. ~While the stationary distribution could in prin
ciple be obtained directly, via solution of a set of algebra
equations, numerical integration is used here since it affo
information on relaxation times as well.! The integration is
halted when a stationary distribution is attained, that is, wh
the time derivativesdP(C)/dt all have an absolute valu
smaller thand ~typically, d510213). An interesting technical
point concerns the evaluation of the (n21)-site marginal
distribution. There are evidently two equivalent expressio
that may be used,

P(n21)~zn21 , . . . ,z1!5 (
zn50

2

P(n)~zn ,zn21 , . . . ,z1!

and

P(n21)~zn21 , . . . ,z1!5 (
z050

2

P(n)~zn21 , . . . ,z1 ,z0!.
2-2
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Numerical stability isgreatly enhancedusing themeanof the
two expressions given above.

For sizesn>7, very near the critical point, relaxation t
the stationary distribution is very slow, and the followin
procedure proves advantageous. LetD5maxCudP(C)/dtu be
the largest derivative~in absolute value!. The properties of
interest~principally, the active-site density! are recorded as a
function of D, and the integration halted whenD,10210.
Figure 1 shows the result for the active-site density, foz
slightly abovezc . The stationary value is obtained via e
trapolation toD50, usually via a quadratic fit to the fou
data points for the smallestD. ~The resulting correction is
typically less than 1% of the value atD510210.! I also
studied the order parameter relaxation rateg5uṙ/ru for each
n at a series ofz values near, but belowzc . These data are
used to estimate the critical exponentn uu in Sec. V.

IV. NUMERICAL RESULTS

The n-site approximation predictions forra(z) (n
53 –11) are compared against simulation in Fig. 2; the t
oretical curves appear to approach the simulation result
tematically. For eachn, the active-site density is zero belo
a certain critical valuezc,n . Since the phase transition in th
stochastic sandpile is continuous@16,26#, one expects the
same to be true of the cluster approximations. This is ind
the case forn<4, but for n55, 6, and 7 there is a ver
small discontinuity inra (&1023, invisible on the scale of
Fig. 2!, as we decreasez. Since the same procedure is us
for all n, the discontinuity is unlikely to be artifact of th
numerical method. On the other hand, I do not regard
discontinuity as physically significant; it appears to repres
an unphysical feature of the cluster approximations for c
tain n values, very near the critical density. In the CA
analysis I disregard the behavior ofra in the immediate vi-
cinity of zc,n , and instead analyze its properties at poi
somewhat removed from the transition.

The critical densityzc,n is determined by fitting the fou
or five data points nearest the transition, wherer.1023 or
less. In each case, I plot lnra versus ln(z2zc,n), varyingzc,n

FIG. 1. Active-site densityr versusD5maxC udP(C)/dtu, for
n510, z50.8860.
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to obtain the best power-law fit. The associated slopes v
between 1~for n53) and about 0.25~for n56), but these,
again, are regarded as unimportant details of the approxi
tion in question. It is important to stress that, in the ca
where the transition is apparently discontinuous, the diff
ence between the location of the discontinuity and the
trapolated value ofzc,n is less than one part in 105, and that
the estimates forzc and critical exponents are insensitive
these tiny differences. The values ofzc,n obtained in this
manner are listed in Table II.

Using the results forzc,n , I estimatezc5 limn→`zc,n by
plotting Dn[zc2zc,n versusn in a double-logarithmic plot,
varying zc to obtain the best power-law fit. The latter
obtained usingzc in the range 0.929–0.931, yieldingzc
50.930(1), in good agreement with the simulation result
0.929 65@26#. The finite-size scaling prediction for the crit
cal point shift is@29# Dn

n'}1/n. I obtain a good fit to the data
~see Fig. 3! using n'51.66 ~as found in simulations
@16,26#!, including a correction to scaling term

Dn
n'}

A

n
1

B

n2
.

FIG. 2. Stationary active-site densityr versus particle densityz.
Solid curves,n-site approximations forn53 –11; points, simulation
results for a system of 5000 sites.

TABLE II. Critical densities in then-site approximation.

n zc,n

1 0.5
2 0.75
3 0.80854
4 0.83682
5 0.85305
6 0.86378
7 0.87148
8 0.87736
9 0.88207
10 0.88594
11 0.88918
2-3
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The numerical data are consistent with the simulation e
mate for n' , but not sufficient to furnish an independe
estimate of the exponent.

V. COHERENT ANOMALY ANALYSIS

A detailed explanation of the CAM procedure is given
Ref. @17,18#; it may be understood on the basis of finite-si
scaling@29#. The approach here parallels that used by To´
and de Oliveira in their study of the Domany-Kinzel mod
@30#. To begin, one argues that the cluster sizen plays the
role of an effective system sizeL as regards scaling prope
ties. This is because then-site approximation effectively cut
off correlations of range.n. As noted above, one then ex
pects a critical point shiftDn}n21/n'. Finite-size scaling
theory also yields the relationra,n(zc)}n2b/n'}Dn

b for the
order parameter in a finite system, at the~true! critical point.
For z.zc,n , ra,n(z) is a smooth function. Thus we are led
a scaling hypothesis for the order parameter@30#

ra,n~z!5Dn
b f S z2zc,n

Dn
D , ~3!

wheref (x) is a scaling function withf (0)50. If we suppose
that f (x)}xbMF for 0<x<1, then ra,n(z)5An(z
2zc,n)bMF, where the amplitudeAn diverges asn→`,

An}Dn
2(bMF2b) . ~4!

This is the usual CAM relation. On the other hand, the h
pothesis thatn is equivalent to a finite system size lea
directly to

ra,n~zc!;Dn
b . ~5!

This expression involves the behavior of then-site approxi-
mation at the critical pointzc not atzc,n . It is interesting to
note that the hypothesis of an effective system size dire
proportional ton is not strictly necessary. The scaling rel

FIG. 3. Critical point shiftDn
n' versus 1/n. The solid line is a fit

including a correction term as described in the text.
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tions involvingDn follow from the more general hypothes
of an effective system sizeLe f f5Le f f(n), for example,
Le f f}nf with f.0.

A. CAM analysis for b

As noted above, then-site approximations for the orde
parameterra,n are not all well behaved in the vicinity o
zc,n . For this reason, analysis ofra,n at zc,n will not yield a
consistent set of well defined amplitudesAn . But since
ra,n(z) is well behaved forz.zc,n , we can study its scaling
at some point intermediate betweenzc,n andzc . In particu-
lar, the scaling hypothesis Eq.~3! implies that if we fix x
5(z2zc,n)/Dn , then

dra,n

dz
5 f ~x!Dn

b2bMF . ~6!

Our strategy is to analyze the order parameter data rea
ably near then-site critical value, but away fromzc,n itself,
wherera,n is singular. A crucial point in this analysis is th
postulate that the mean-field exponentbMF51, regardless
of the behavior ofra,n in the immediate vicinity ofzc,n . The
motivation for this assumption is, first, thatbMF is clearly
unity for n51, 2, or 3; second, that a critical exponent su
asb is determined, in mean-field theory, by symmetry pro
erties of the order parameter, and hence should not vary
n; and third, thatbMF51 generically for phase transitions t
an absorbing state@31#. ~The basis for this last assertion
that the mean-field equation for the order parameter w
have the formdr/dt5Ar2Br2, barring some coincidence
or a symmetry that rendersA and/orB zero @32#.!

I evaluateddra,n /dz ~numerically, using an intervalD
50.0005), for fixedx51/4; the results are shown in Fig. 4
Least-squares linear fits to the data forn58 –11 yield, via
Eq. ~6!, the valueb50.408(6), where the figure in paren
thesis denotes the uncertainty. Usingzc50.929 instead of the
best estimate, 0.930, I foundb50.421(5). Thus a reason-

FIG. 4. rn8[dra,n /dz versusDn . The derivative is evaluated a
x51/4. The slope of the solid line is20.592, corresponding tob
50.408.
2-4
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able estimate forb is 0.41~1!. ~A similar analysis, but evalu-
ating the derivatives atx51/2, yieldsb50.42.!

The above analysis is complemented with a study
ra,n(zc), as suggested by Eq.~5!. The graph ofra,n(zc)
versusDn shows~on log scales, see Fig. 5!, a fair amount of
curvature, making determination ofb more difficult in this
case. Linear fits to the data forn5729, 8–10, and 9–11
yield, respectively,b50.471, 0.460, and 0.448, consiste
with an approach to the value of 0.41 for largen. Verification
of convergence must naturally await the evaluation of
proximations for larger clusters.

A further point of interest is the validity of the scalin
hypothesis, Eq.~3!. The data collapse shown in Fig. 6, a pl
of r* 5Dn

2bra,n versusx5(z2zc,n)/Dn provides support
for the hypothesis.~In Ref. @30# a similar collapse is demon
strated for the Domany-Kinzel model.!

B. CAM analysis for n zz

As shown in Refs.@17–19#, the CAM approach is readily
extended to dynamics. Let

FIG. 5. Active-site densityra,n(zc) versusdn . The slope of the
solid line is 0.408.

FIG. 6. Scaled active-site densityr* 5Dn
2bra,n versus scaled

particle densityx5(z 2zc,n)/Dn , for n56 –11.
03612
f
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gn~z!52
1

r

dr

dt
~7!

be the relaxation rate in then-site approximation, and le
g(z) be the true relaxation rate. Then we expectg;uz
2zcun uu, while gn;uz2zc,nun uu,MF in the n-site approxima-
tion, where the mean-field exponent isn uu,MF51 for models
with an absorbing-state phase transition@31#. A scaling hy-
pothesis, analogous to Eq.~3!, for the relaxation rate, is

gn~z!5Dn
n uu gS z2zc,n

Dn
D , ~8!

where the scaling functiong vanishes when its argument
zero. Supposing thatg(x);uxun uu,MF, we see thatgn(z)
;ḡnuz2zc,nu, where the amplitude follows

ḡn;Dn
n uu2n uu,MF . ~9!

I determine the relaxation rate numerically forz&zc,n ,
and from these data extract the amplitudesḡn . The results,
shown in Fig. 7, display substantial curvature on a log-
plot, so that the direct determination of the critical expone
n uu is not feasible. Simulations@16,26# yield estimates forn uu
in the range 2.3–2.6. The CAM results are consistent w
values in this range, if we include a correction to scalin
The solid line in Fig. 7 is given by

ln ḡn51.5 lnDn1ADn2B, ~10!

with fit parametersA57.435 andB52.125, consistent with
a correction to scaling expressionḡn}Dn

n uu21(11ADn), with
n uu52.5.

VI. DISCUSSION

I study the n-site cluster approximations for a one
dimensional stochastic sandpile model with a fixed parti

FIG. 7. Relaxation rate amplitudeḡn versusDn . The solid curve
is a fit including a correction to the scaling term as described in
text.
2-5
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density, and a height restrictionzi<2. The analysis of the
results for n<11 yields the estimateszc50.930(1), b
50.41(1), and n uu.2.5, all in agreement with simulatio
@26#. While the results are not very precise, they prov
significant independent support for the simulational findin
showing that FES models with a strict activity threshold b
long to a universality class distinct from that of direct
percolation~DP! @21–23#. Sandpile models in which site
with an above-threshold height can remain stable~so-called
‘‘sticky grains’’!, have recently been shown to belong to t
i,

ni

b-
,

-

p-

,

03612
,
-

DP class@33#, but that is not the case for the model studi
here. Application of the methods used in this work to oth
sandpile models should prove illuminating.

ACKNOWLEDGMENTS

I thank Mário de Oliveira, Taˆnia Tomé, Attila Szolnoki,
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