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n-site approximations and coherent-anomaly-method analysis for a stochastic sandpile
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n-site cluster approximations for a stochastic sandpile in one dimension are developed. A height restriction
is imposed to limit the number of states: each site can harbor at most two paftieigktz;<2). (This yields
a considerable simplification over the unrestricted case, in which the number of states per site is unpounded.
On the basis of results fan<11 sites, the critical particle density @s=0.930(1) is estimated, in good
agreement with simulations. A coherent anomaly analysis yields estimates for the order parameter exponent
[8=0.41(1)] and the relaxation time exponent=2.5).
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[. INTRODUCTION culational convenience, as a representative of a broader uni-
versality class that includes Manna’s stochastic sandpile, the
Sandpile models are the prime example of self-organizegonserved lattice gas, and the conserved threshold transfer
criticality [1—3], in which a system with an absorbing-state Procesg21]. , , ,
phase transition is forced to its critical poiat—6), leading The rest of the paper is organized as follows. The model is
to scale invariance in the apparent absence of paranjaiers 9€fined in Sec. I, followed by a discussionresite approxi-
. o . mations in Sec. Ill. Numerical results are presented in Sec.
The absorbing-state phase transition, which depends, . The CAM analysis is discussed in Sec. V, and in Sec. VI
usual, on the fine tuning of one or more control parameters;, present a brief summary. ’
is evident in sandpiles with a fixed number of partidlé8—
14], models that have come to be called fixed-energy sand- Il. MODEL
piles (FES. . ' . . . -
Previous studies of FES reveal that they exhibit a phas%oThe model is defined on a ring &f sites with periodic

i . ) undaries(The cluster approximations effectively study the
transition between an absorbing and an active state as trLe_)oo limit.) The configuration is specified by the number of

particle density (which is the temperaturelike control pa- particlesz,=0,1, or 2 at each site; sites with=2 are said to
rametey is increased beyond a critical val{#,15,16. Until  pe active and have a toppling rate of unity. The continuous-
now, most quantitative results on FES have been obtainegime (sequentigl Markovian dynamics consists of a series of
from simulations[34]. It is therefore of interest to apply toppling events at individual sites. When sitéopples, two
theoretical methods to such models. One such approach fmrticles attempt to move to randomly chosen nearest neigh-
Suzuki's coherent anomaly methg@AM) for analyzing a borsj andj’ of i. The new position of each particle is ac-
series of cluster approximations. It has been shown to yieldepted if and only if the target site has fewer than two par-
good estimates for critical properties both[itv,18 and out ticles. | consider a stochastic toppling rule in which the two
of equilibrium[19,20. In this work | develom-site approxi- ~ particles move independently. Any particle attempting to
mations for a one-dimensional sandpile model, and analyz&ove to a site already harboring two particles is sent back to
the results using the CAM. This represents the application ofhe toppling site(Thus an attempt to send two particles from
the CAM to a model representative of the class of absorbingsitej to sitek, with z,=1, results inz,=2 andz;=1.) Tran-
state phase transitions in systems with a conserved densigftion probabilities are listed in Table I.
[21_23' ) . L TABLE I. Transition probabilities for the restricted-height sand-
In this paper | study a FES with a height restriction. From e 'propapilities are symmetric under reflection.
the theoretical viewpoint, an inconvenient feature of sandpile

models is the unbounded number of particles that may oc- Transition Probability
cupy the same site; this complicates attempts to derive clus
ter approximations. In Manna’s stochastic sandfi4,25, 020-101 172
sites with heightz=2 are active. If we restrict the heigtdr —200 1/4
number of sand grains per sitdo be <2, the effect on 120-201 1/2
critical properties should be minimal, aside from a possible —102 1/4
shift in the critical density,.. This expectation was recently —210 1/4
verified numerically: the restricted-height stochastic sandpile 121202 12
belongs to the same universality class as its unrestricted —211 1/4
counterpar{26]. | study the restricted-height model for cal- 220202 1/4
—211 1/2
122—-212 3/4
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This model was studied via simulation in REZ6], which  transitionC—(C’ is the product of a branching probabilipy,
showed that the critical exponensand v, are the same as (for the particles to be redistributed in a particular manner, as
for the unrestricted Manna sandpile. A similar conclusionin Table |), and the intrinsic toppling rate, which is unity.
was reached in Ref21] for a two-dimensional restricted- Consider, for example, configuratia@h= (21120). The tran-
height sandpilécalled the conserved threshold transfer pro-sition rates associated with a toppling at the second site
cess in that work (counting from the rightare

1
IIl. CLUSTER APPROXIMATIONS W[ (21120 —(21102]= 7

The procedure parallels that used by Ferreira and
Mendirata to study the one-dimensional contact prof2@8k 1
The n-site approximation consists of a set of coupled differ- w[(21120—(2120)]= =,
ential equations for the probabilitieB‘C”) of eachn-site con- 2
figurationC. (There are 3 such configurations, but the num-
ber of independent probabilities is~3"/2, due to
symmetries. The system is assumed homogeneous, so that
the P{" are independent of position.

Since transitions in a set of contiguous sites generally For each configuratiod, the set of allowed transitions to
depend on sites outside the cluster, tkgite probabilities are  other states, and the associated rates, are stored. In the case
coupled to those fon+1 and so on, generating an infinite of a central transition fronC to C’, the contribution to
hierarchy of equations. The-site approximation truncates dP(C’)/dtis w[C—C"]P(C); the same quantity is of course
this hierarchy by approximatingrsite probabilities(for m  subtracted frond P(C)/dt.

1

w[(21120—(21210]= 7.

>n) in terms ofn-site conditionalprobabilities. In then-site For boundary transitions, one does not have access to the
approximation, the joint probability for a sequencenof 1 (n+1)-site probabilities required to mount a complete de-
sites is approximated 480] scription, and so must resort to the truncation scheme em-
bodied in Eq. (1). For example, the contribution to
PO (zy, ... Znss) dP(2z,, ...,z,)/dt due to the transition (2;, ...z,
125, ...,2,) is
=PM™(zy4]Zq, ... Z)PM(z,, ... 2Z1) —(12z )
1 3
_ POz, )PPz, - 2) @ SPON022,, . 20+ 7 PO(1,22,, . 2).
Pz, ....,2,) '

o _ The P("™1) are estimated using E@l). For boundary tran-
Other approximation schemes are possf@lg]; that embod-  jtions one stores not only the rate, but the two configura-

led in Eq.(1) is employed here because it retains the maxiyions (aside from the original one) whose probabilities are
mum information possible regarding correlations amongsheeded to evaluatdP(C)/dt. With this information avail-

sites in the (1.+ 1)-site sequence. . L able, one can evaluate the derivativd3(C)/dt for all pos-
The equations for one- and two-site approximations argp|e configurations, given the probability distribution.

relatively simple to derive, and are described in R2]. | The evolution of the probability distribution is found via
have developed a computational algorithm capable of genefynerical integration, using a fourth-order Runge-Kutta

ating the approximation for arbitrany. Each configuration  gcheme2g]. (While the stationary distribution could in prin-

C=(zn, ... .z1) is represented by an integer ciple be obtained directly, via solution of a set of algebraic
n equations, numerical integration is used here since it affords
1(0)=, 73 L. ) information on relgxation Fimgs as V\_/elrl'hg integratiqn is
k=1 halted when a stationary distribution is attained, that is, when

the time derivativesd P(C)/dt all have an absolute value

The calculation begins with the generation of all configu-smaller thars (typically, =10 3. An interesting technical
rations, corresponding to each integer from zéat sites  point concerns the evaluation of the-{1)-site marginal
empty up to the maximum, B3-1 (all sites doubly occu- distribution. There are evidently two equivalent expressions
pied); the symmetry(under inversiopof each configuration that may be used,
is determined. IfC is not symmetric, the® and its mirror
image Cgr must have the same probability, and only the
smaller ofC andCg is treated explicitly, reducing the number POD(z,_y, ... 21)= 2 P™(z,,20-1, ....21)

2

of variables roughly by half. #n=0
Next, a list of all possible transitions is constructed. Here, 4
it is useful to distinguish betweesentraltransitions(involv-
ing a toppling at one of the sites 2. . ,n—1) andboundary 2
transitions, in which either site 1 or site or one of the PO"N(z, 1, ..., 29)= 2 PM(z, 1, ... 21,20).
peripheral siteg0 or n+1) topples. The rate of a central 2=0
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FIG. 1. Active-site density versusD=max, |dP(C)/dt|, for
n=10, {=0.8860.

Numerical stability igreatly enhancedsing themeanof the
two expressions given above.

For sizesn=7, very near the critical point, relaxation to
the stationary distribution is very slow, and the following
procedure proves advantageous. Det max.|d P(C)/dt| be
the largest derivativéin absolute valug The properties of
interest(principally, the active-site densitare recorded as a
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FIG. 2. Stationary active-site densjiyersus particle density.
Solid curvesp-site approximations fon=3-11; points, simulation
results for a system of 5000 sites.

to obtain the best power-law fit. The associated slopes vary
between 1(for n=3) and about 0.2%for n=6), but these,
again, are regarded as unimportant details of the approxima-
tion in question. It is important to stress that, in the cases
where the transition is apparently discontinuous, the differ-
ence between the location of the discontinuity and the ex-

function of D, and the integration halted wheb<10 .
Figure 1 shows the result for the active-site density, for

trapolated value of , is less than one part in §pand that
the estimates fo{, and critical exponents are insensitive to

slightly _abovegc. The stationgry value is _obt_ained via exX- thage tiny differences. The values of, obtained in this
trapolation toD =0, usually via a quadratic fit to the four ,5nner are listed in Table II. ’

Using the results fog ,, | estimate.=lim, . .{., by

data points for the smallef. (The resulting correction is
typically less than 1% of the value &=10 1) | also

plotting A, ={.— {.., versusn in a double-logarithmic plot,

studied the order parameter relaxation rate| p/p| for each  varying ¢, to obtain the best power-law fit. The latter is
n at a series of values near, but belo.. These data are optained using/, in the range 0.929-0.931, yielding,

used to estimate the critical exponentin Sec. V. =0.93(1), in good agreement with the simulation result of
0.929 65[26]. The finite-size scaling prediction for the criti-
IV. NUMERICAL RESULTS cal point shift is[29] A *o1/n. | obtain a good fit to the data

The n-site approximation predictions fop,(Z) (n
=3-11) are compared against simulation in Fig. 2; the the*
oretical curves appear to approach the simulation result sys-
tematically. For eaclm, the active-site density is zero below
a certain critical valug . Since the phase transition in the
stochastic sandpile is continuo(i$6,26, one expects the
same to be true of the cluster approximations. This is indeed

(see Fig. 3 using v, =1.66 (as found in simulations
[16,26)), including a correction to scaling term

v A B
An OCE'FF.

TABLE Il. Critical densities in then-site approximation.

the case fom=4, but forn=5, 6, and 7 there is a very

>

gc,n

small discontinuity inp, (<103, invisible on the scale of
Fig. 2), as we decreasé Since the same procedure is used
for all n, the discontinuity is unlikely to be artifact of the
numerical method. On the other hand, | do not regard the
discontinuity as physically significant; it appears to represent
an unphysical feature of the cluster approximations for cer-
tain n values, very near the critical density. In the CAM
analysis | disregard the behavior pf in the immediate vi-
cinity of /. ,, and instead analyze its properties at points
somewhat removed from the transition.

The critical density/,. , is determined by fitting the four
or five data points nearest the transition, where10™> or

©O© 00N O~ WN P

B
= o

0.5
0.75
0.80854
0.83682
0.85305
0.86378
0.87148
0.87736
0.88207
0.88594
0.88918

less. In each case, | plot j versus In{—{; ), varying .
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including a correction term as described in the text. x=1/4. The slope of the solid line i50.592, corresponding t@

~0.408.
The numerical data are consistent with the simulation esti-
mate forv, , but not sufficient to furnish an independent tjons involving A, follow from the more general hypothesis
estimate of the exponent. of an effective system sizé o ;=Loi(n), for example,
Leff0<n¢’ with ¢>0
V. COHERENT ANOMALY ANALYSIS

A detailed explanation of the CAM procedure is given in A. CAM analysis for B
Ref.[17,18]; it may be understood on the basis of finite-size  As noted above, the-site approximations for the order
scaling[29]. The approach here parallels that used by Tomeyarameterp, , are not all well behaved in the vicinity of
and de Oliveira in their study of the Domany-Kinzel model ;_ . For this reason, analysis pf, , at ¢, , will not yield a
[30]. To begin, one argues that the cluster sigplays the  consistent set of well defined amplitudds,. But since
role of an effective system sideas regards scaling proper- ,_ (¢) is well behaved fot> ¢, ,, we can study its scaling
ties. This is because thresite approximation effectively cuts at some point intermediate bet'weean and{.. In particu-
off correlations of range>n. As noted above, one then ex- |ar, the scaling hypothesis E¢B) implies that if we fixx
pects a critical point shiftA,«n~".. Finite-size scaling =({—Len)A,, then
theory also yields the relatiop, ,(£c)on~#"LcA¥ for the enmen
order parameter in a finite system, at thrie) critical point. dpan
For{>{cn, pan({) is a smooth function. Thus we are led to d¢
a scaling hypothesis for the order param¢&#]

=f(x)AP7PuF, Q)

Our strategy is to analyze the order parameter data reason-
3) ably near then-site critical value, but away frord, , itself,
wherep, , is singular. A crucial point in this analysis is the
postulate that the mean-field expongd-=1, regardless
wheref(x) is a scaling function witti (0)=0. If we suppose  of the behavior op, , in the immediate vicinity of.. ,. The
that f(x)oxPur  for O=x=<1, then p,,({)=An({  motivation for this assumption is, first, thiy is clearly

g_gc,n
Ay

Pa,n(g):Aﬁ f

—{c,n)PVF, where the amplitudd, diverges as1—, unity forn=1, 2, or 3; second, that a critical exponent such
B B as B is determined, in mean-field theory, by symmetry prop-
ApxA (Bur=h) (4)  erties of the order parameter, and hence should not vary with

n; and third, tha{Byr=1 generically for phase transitions to
This is the usual CAM relation. On the other hand, the hy-an absorbing state81]. (The basis for this last assertion is
pothesis thatn is equivalent to a finite system size leadsthat the mean-field equation for the order parameter will
directly to have the formdp/dt=Ap—Bp?, barring some coincidence

or a symmetry that rendess and/orB zero[32].)

pa,n(gc)~Aﬁ. (5) | evaluateddp, ,/d{ (numerically, using an intervah

=0.0005), for fixedx=1/4; the results are shown in Fig. 4.
This expression involves the behavior of thaite approxi- Least-squares linear fits to the data for8—11 yield, via
mation at the critical point, not at{. . It is interesting to  Eq. (6), the valueg=0.408§6), where the figure in paren-
note that the hypothesis of an effective system size directlyhesis denotes the uncertainty. Usifig= 0.929 instead of the
proportional ton is not strictly necessary. The scaling rela- best estimate, 0.930, | foun8=0.4215). Thus a reason-
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FIG. 7. Relaxation rate amplitudTel versusi,, . The solid curve
is a fit including a correction to the scaling term as described in the
text.
able estimate fop is 0.411). (A similar analysis, but evalu-
ating the derivatives at=1/2, yields3=0.42)

The above analysis is complemented with a study of
pan({c), as suggested by EqS). The graph ofp, n(Zc)
versusA , shows(on log scales, see Fig),5 fair amount of
curvature, making determination ¢f more difficult in this
case. Linear fits to the data for=7—-9, 8-10, and 9-11
yield, respectively,3=0.471, 0.460, and 0.448, consistent
with an approach to the value of 0.41 for langé/erification
of convergence must naturally await the evaluation of ap-
proximations for larger clusters.

A further point of interest is the validity of the scaling
hypothesis, Eq(3). The data collapse shown in Fig. 6, a plot
of p*ZA;Bpa’n versusx=({—{cn)/A, provides support
for the hypothesis(in Ref.[30] a similar collapse is demon-
strated for the Domany-Kinzel modgl.

FIG. 5. Active-site density, ({.) versusd, . The slope of the
solid line is 0.408.

1d
-S ™

()= p dt

be the relaxation rate in the-site approximation, and let
y({) be the true relaxation rate. Then we expect |
=", while y,~|{— ¢ ol"IMF in the n-site approxima-
tion, where the mean-field exponentuig yr=1 for models
with an absorbing-state phase transit|@&1i]. A scaling hy-
pothesis, analogous to E€), for the relaxation rate, is

{— ch)

() =A VHg 8

where the scaling functiog vanishes when its argument is
zero. Supposing thag(x)~|x|”IlMF, we see thaty,({)

B. CAM analysis for ~¥al{= Lo.nl, where the amplitude follows

As shown in Refs[17-19, the CAM approach is readily

o~ AYITVIME 9
extended to dynamics. Let Y™ %0 ©

| determine the relaxation rate numerically fo= (.,

and from these data extract the amplitudgs The results,
shown in Fig. 7, display substantial curvature on a log-log
plot, so that the direct determination of the critical exponent
v) is not feasible. Simulationisl 6,26 yield estimates fow,

in the range 2.3-2.6. The CAM results are consistent with
values in this range, if we include a correction to scaling.
The solid line in Fig. 7 is given by

0.4""I""I""I""I""
0.3

a 0.2 -
Iny,=1.5InA,+AA,—B, (10)

0.1
with fit parameterdA=7.435 andB=2.125, consistent with

a correction to scaling expressiaqocAr’:”_l(leAAn), with
v |=2.5.

X VI. DISCUSSION

| study the n-site cluster approximations for a one-
dimensional stochastic sandpile model with a fixed particle

FIG. 6. Scaled active-site densip/ =A;ﬂpa’n versus scaled
particle densityx=({ " {.n)/A,, for n=6-11.
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density, and a height restrictian<2. The analysis of the DP clasg33], but that is not the case for the model studied
results for n<11 vyields the estimateg.=0.9301), 8  here. Application of the methods used in this work to other
=0.41(1), and»=2.5, all in agreement with simulation sandpile models should prove illuminating.

[26]. While the results are not very precise, they provide

significant independent support for the simulational findings, ACKNOWLEDGMENTS
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